Pericardial Disease: Key Concepts

Leonard S. Lilly, M.D.

Professor of Medicine
Harvard Medical School
Chief, Brigham/Faulkner Cardiology
Brigham and Women's Hospital

Leonard S. Lilly, M.D.

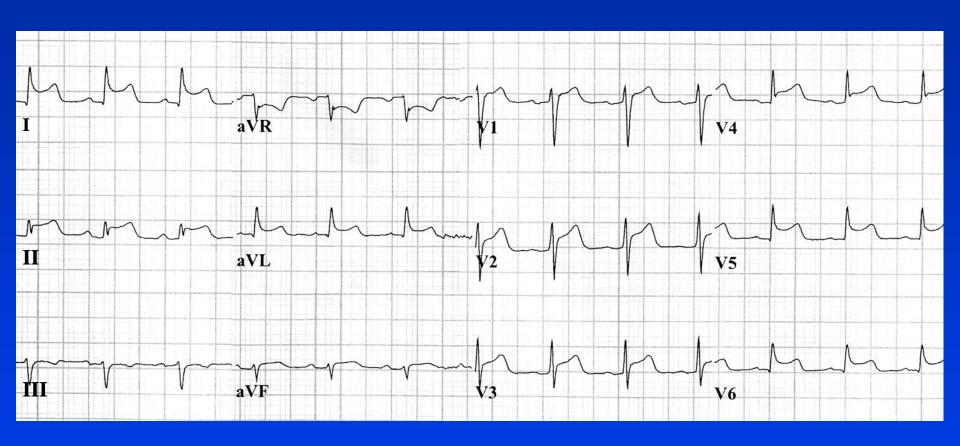
- Professor of Medicine
 Harvard Medical School
- Chief, Brigham/Faulkner Cardiology Section Brigham & Women's Hospital
- Clinician, Educator, Textbook Author
 - Clinical focus: General and preventive cardiology, noninvasive imaging, pericardial disease
 - Research interests: Novel approaches for pericardial disease, innovations in medical education

Disclosures

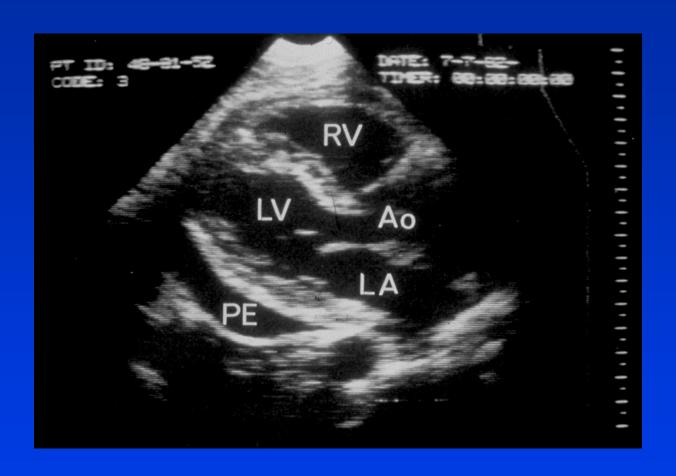
Member of Data Monitoring Committee for RHAPSODY trial (Cleveland Clinic / Kiniksa Pharmaceuticals)

Objectives

Diagnosis and management of:


- Acute pericarditis
- Cardiac tamponade
- Constrictive pericarditis

Case Presentation


42-year-old malpractice attorney presents to the emergency department with chest pain since awakening

- No history of angina
- Father had MI at age 55
- Had uncomplicated upper respiratory tract infection one month ago

Electrocardiogram

	ST Coving	Which Leads?	ST-T Evolution	PR Segment
Pericarditis	(STE < 5 mm)	Diffuse	Days- weeks	\
Acute		Localized	Hours	Normal

Acute Pericarditis

- >85% post-viral / idiopathic¹
- Usually self-limited: 1-3 weeks
- 15-30% recurrence rate²
- Several recent prospective trials offer evidence-based guidance

Management of Acute Pericarditis

- Aspirin and other NSAIDs
- Colchicine
- Glucocorticoids

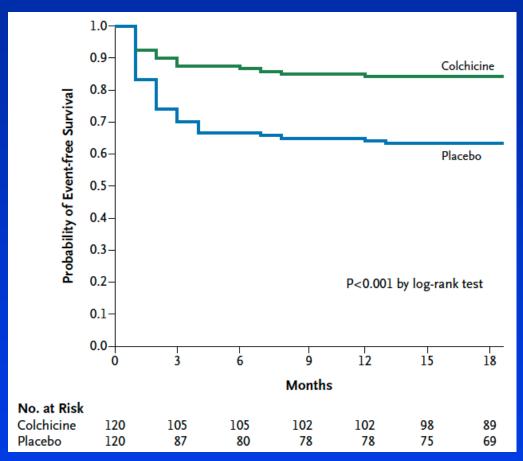
NSAIDs

No prospective randomized trials

Aspirin ¹	650-975 mg TID-QID
Ibuprofen	400-800 mg TID
Indomethacin	50 mg TID
Ketorolac ²	IM or IV: 15-30 mg QID

~2 week course followed by taper

NSAIDs


- If symptoms or fever persist > 1 week, consider etiologies other than post-viral / idiopathic
- Imazio et al (J Am Coll Cardiol 2004;43:1042)
 - 254 pts with acute pericarditis treated as outpatients
 - 221 responded rapidly presumably idiopathic
 - 33 (13%) had persistent symptoms
 - 14 Autoimmune disorder¹
 - 6 Tuberculosis

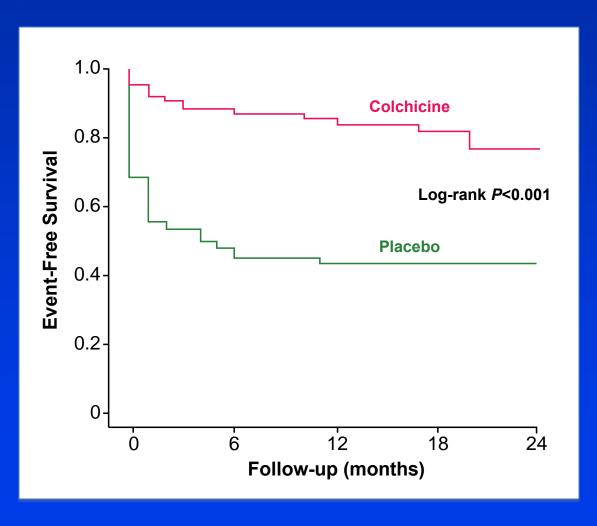
ICAP: Double-blinded Trial of Colchicine in Initial Acute Pericarditis

(Imazio M et al. N Eng J Med 2013; 369:1522)

- Multicenter study of 240 men & women with 1st episode of pericarditis (idiopathic/ viral, CTD, or post-cardiac surgery)
- Randomized to colchicine (0.5-1.0 mg/d x 3 months) vs. placebo, in addition to ASA or ibuprofen
- Primary end point: Persistent or recurrent pericarditis

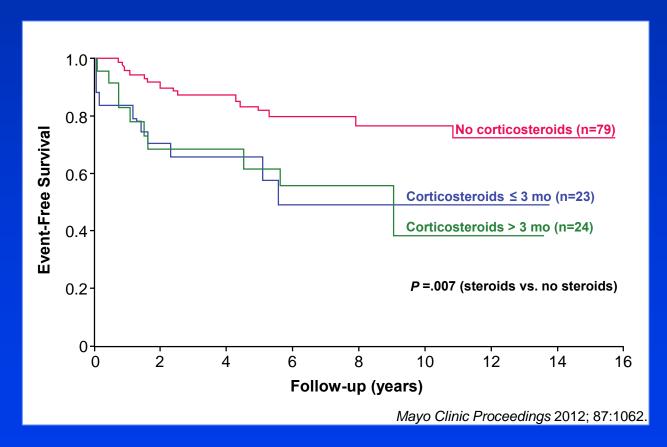
ICAP: Primary Outcome Results

Outcome	RRR	P
Persistent or recurrent pericarditis	0.56	<0.001
Symptoms at 72 hours	0.52	=0.001


CORP: Double-blinded study of colchicine for secondary prevention

(Imazio M et al. Ann Intern Med 2011; 155:409)

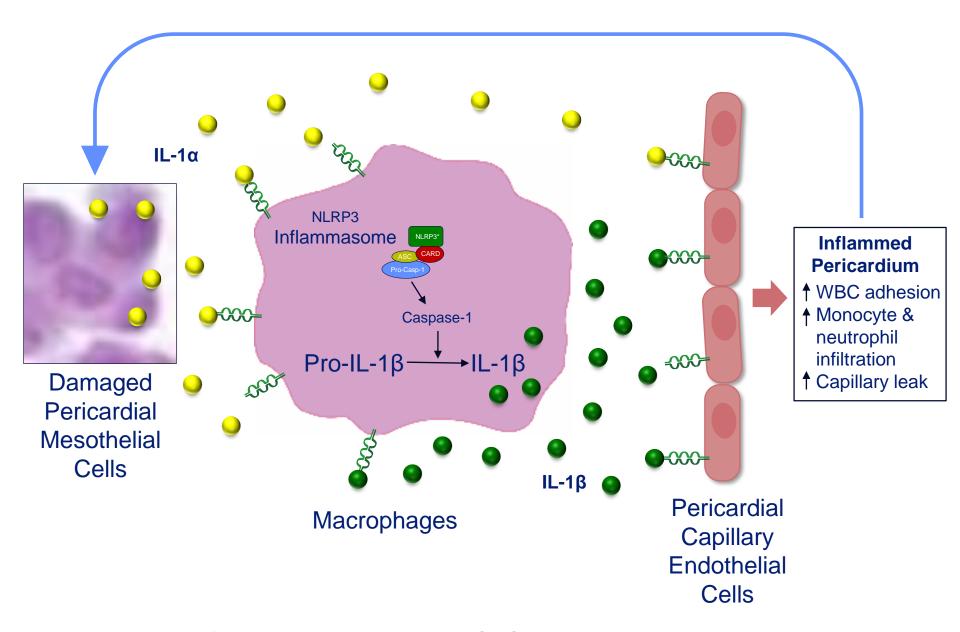
- Prospective, placebo-controlled trial at four urban hospitals in Italy: 120 men & women with 1st recurrence of pericarditis
- Randomized to colchicine (1-2 mg x 1 day, then 0.5-1.0 mg/d x 6 months) vs. placebo, in addition to ASA or ibuprofen
- Primary end point: Recurrence of pericarditis at 18 months


CORP: Double-blinded study of colchicine for secondary prevention

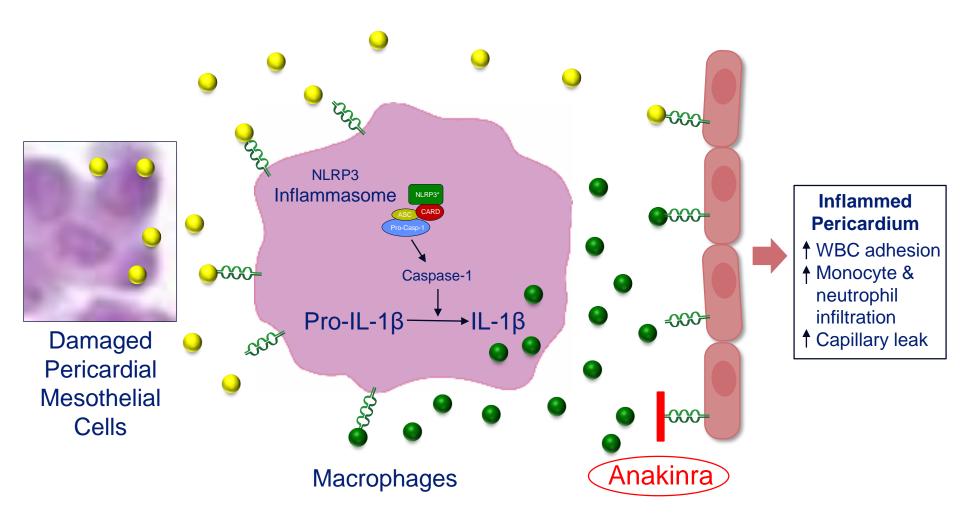
(Imazio M et al. Ann Intern Med 2011; 155:409)

Glucocorticoid Therapy in Pericarditis

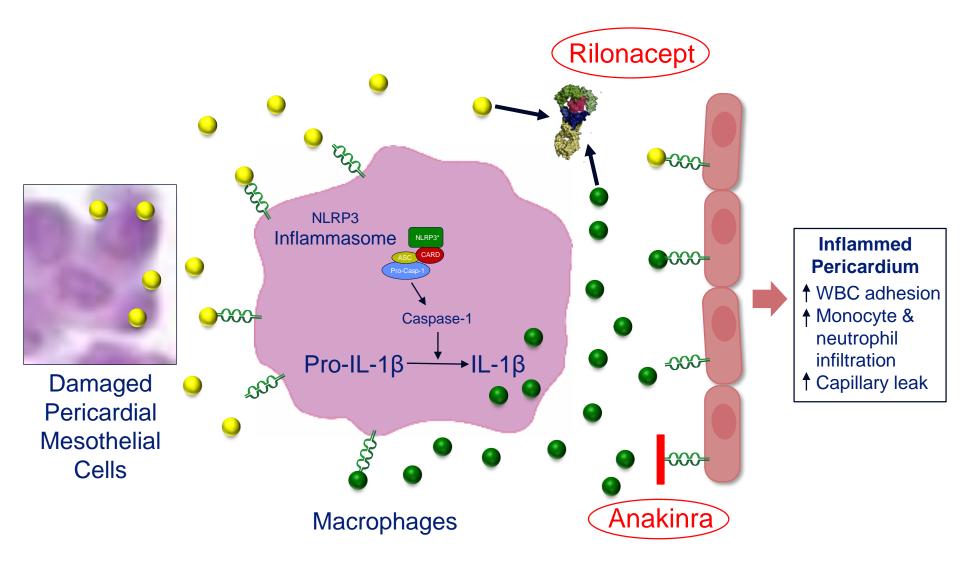
 Rapidly improves symptoms, but should not be used as primary therapy for pericarditis: Increases risk of recurrences¹


Glucocorticoid Therapy in Pericarditis

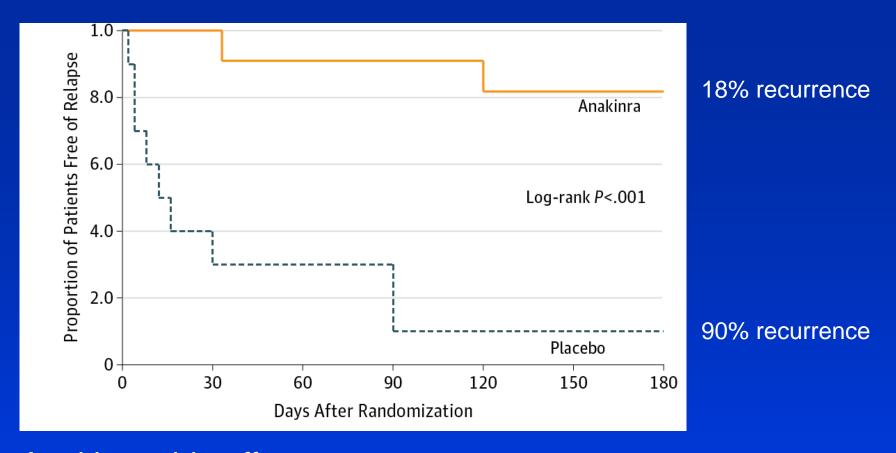
Restrict use to patients truly refractory to, or intolerant of, NSAID + colchicine (and taper slowly)


Approach to Colchicine-Refractory or Steroid-Dependent Patients

- 1. Confirm pericarditis is actual cause of symptoms
- 2. Very slow prednisone taper
- 3. Immunosuppressive therapy (case reports and nonrandomized data: methotrexate, azathioprine, mycophenolate, IV immunoglobulin)
- 4. IL-1 antagonist therapies
- 5. Pericardiectomy


Role of IL-1 in Pericarditis

Role of IL-1 in Pericarditis


Role of IL-1 in Pericarditis

Anakinra in Recurrent Pericarditis

(AIRTRIP Trial *JAMA* 2016; 316:1906)

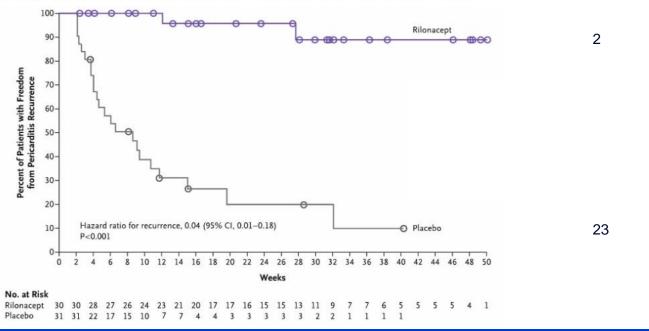
- Double-blind, placebo-controlled, randomized withdrawal trial (n=21, mean age 45.4 y)
- Patients with ≥ 3 recurrences (colchicine resistant, glucocorticoid dependent, elevated CRP)
- Initial open label treatment with daily subcutaneous anakinra: All patients able to stop steroids, CRP normalized
- At 60 days: randomized to continued anakinra vs. placebo x 6 months
- Primary end point: Recurrent pericarditis

Anakinra side effects:

- Local skin reaction common (resolved with topical Rx)
- 3 pts: transaminitis (<2xULN), reversed with ↓dose

Conclusion:

- Anakinra allows rapid withdrawal from steroids
- Prolonged therapy is necessary


Rilonacept in Recurrent Pericarditis

(RHAPSODY Trial N Engl J Med 2021; 384:31)

- Double-blind, placebo-controlled, randomized withdrawal trial (n=61, mean age 44.7 y)
- Patients with ≥2 recurrences and elevated CRP (~47% on glucocorticoid therapy)
- Initial open label treatment with weekly subcutaneous rilonacept: All patients able to wean off steroids, colchicine
- At 12 weeks: randomized to continued rilonacept vs. placebo
- Primary end point: Recurrent pericarditis

RHAPSODY: Time to the First Adjudicated Pericarditis Recurrence

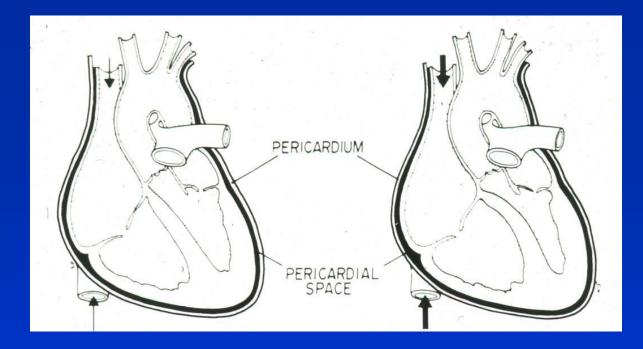
Primary Efficacy Endpoint (Randomized Withdrawal Period; n = 61)

RHAPSODY AEs:

Event	Run-In Period	Randomized Withdrawal Period				
	Rilonacept (N = 86)	Rilonacept, Including Bailout (N = 30)	Placebo, Including Bailout (N = 31)	Rilonacept, Before Bailout (N = 30)	Placebo, Before Bailout (N = 31)	Total (N = 86)
Any AE	69 (80)	24 (80)	22 (71)	24 (80)	13 (42)	74 (86)
Serious AE	1 (1)	1 (3)	3 (10)	1 (3)	1 (3)	5 (6)
Cancer	0	1 (3)	0	1 (3)	0	1 (1)
Injection-site reaction	28 (33)	6 (20)	2 (6)	5 (17)	0	29 (34)
Infection or infestation	14 (16)	12 (40)	7 (23)	12 (40)	3 (10)	29 (34)
URTI	12 (14)	7 (23)	2 (6)	7 (23)	0	19 (22)

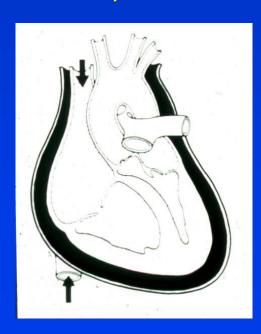
Complications of Acute Pericarditis

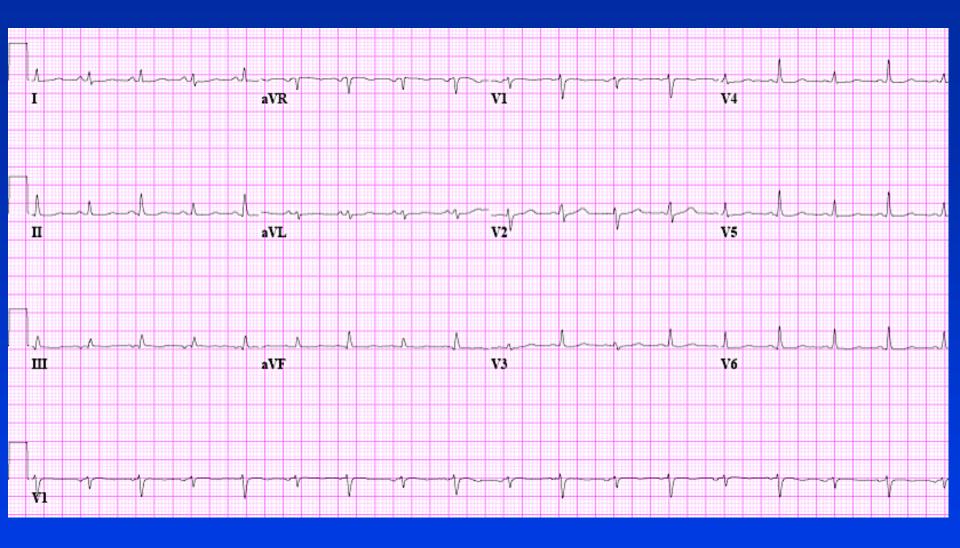
Cardiac tamponade Constrictive pericarditis (Pericardial fluid (Scarred, rigid under pressure) Pericardium) Impaired diastolic ventricular filling Elevated venous Reduced stroke volume pressures Jugular venous distension **Decreased** Cardiac Pulmonary congestion output


Cardiac Tamponade

(Beck, 1935)

- Jugular venous distention
- "Small, quiet heart"
- Hypotension

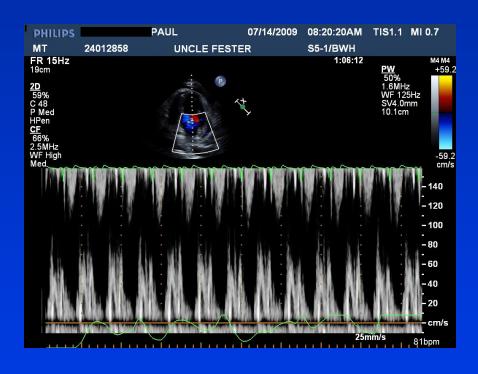

Normal

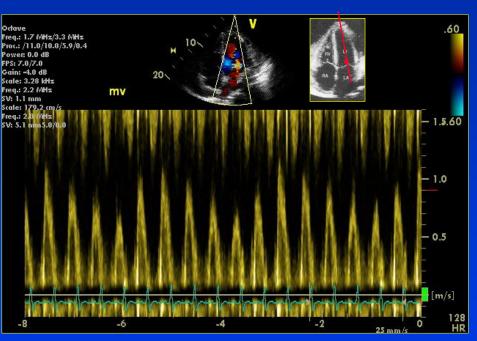


Expiration

Inspiration

Cardiac Tamponade





- Low limb lead voltage
- Electrical alternans

Excessive Respiratory Variation (Flow velocity paradox)

No Tamponade

Tamponade

Cardiac Tamponade

- 1. Pericardial pressure elevated
- 2. Equalization of diastolic pressures:

```
Pericardial pressure = RA
```


Constrictive Pericarditis Etiologies

(Cleveland Clinic Series; n=163)

Postviral / idiopathic 46%

Post–cardiac surgical 37%

Mediastinal irradiation 9%

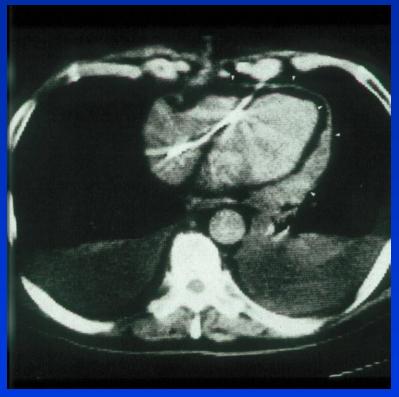
Miscellaneous (e.g., collagen 8% vascular disease)

J Am Coll Cardiol 2004;43:1445.

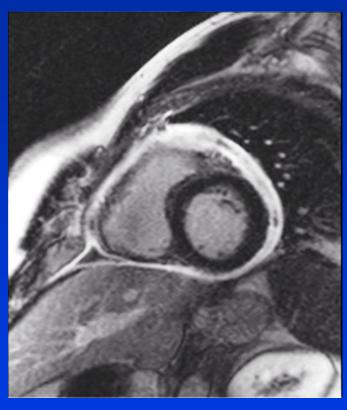
Constrictive pericarditis

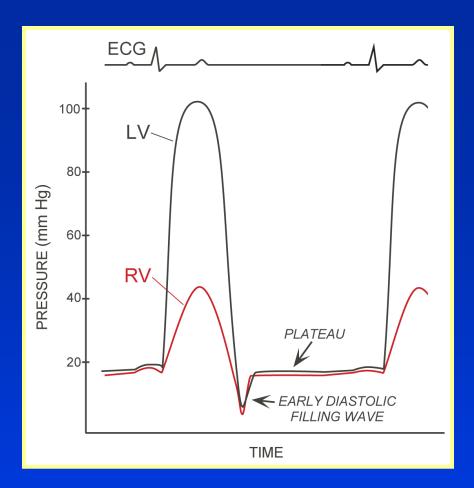
Cardiac tamponade

Pulsus paradoxus


+

+++


Kussmaul Sign


+++

+

- 1. Elevation of diastolic pressure in ventricles
- 2. Equalization of diastolic pressure in ventricles
- 3. "Dip and plateau" pressure pattern

Question #1

38 year old woman, previously healthy, presents with fever, pleuritic anterior chest pain and a pericardial friction rub.

ECG shows diffuse ST elevation and PR segment depression.

Echocardiography demonstrates a small posterior pericardial effusion, without cardiac chamber compression.

Which of the following is correct?

- A. Glucocortocoid therapy is indicated to prevent progression of the effusion
- B. A bacterial etiology is most likely responsible
- C. The relapse rate is > 15%
- D. Kussmaul sign is an expected physical finding

Which of the following is correct?

- A. Glucocortocoid therapy is indicated to prevent progression of the effusion
- B. A bacterial etiology is most likely responsible
- C. The relapse rate is > 15%
- D. Kussmaul sign is an expected physical finding

Question #2

56 year old man presents with exertional dyspnea, marked jugular venous distention and peripheral edema; no pulsus paradoxus.

History of Hodgkin Disease 18 years earlier, treated with chemotherapy and thoracic radiation therapy.

As part of evaluation, right-sided heart catheterization was performed:

Chamber	Pressure (mm Hg)	Normal (mm Hg)
Right atrium (mean)	16	≤ 8
Right ventricle	30/17	≤ 30/8
Pulmonary wedge (mean)	16	≤ 10

Which of the following is true?

- A. Pericardiocentesis should be performed urgently
- B. Therapy should include diuretic, ACE inhibitor and beta-blocker
- C. CT scan would be more helpful than echocardiography in confirming diagnosis
- D. Sinus bradycardia is likely present

Which of the following is true?

- A. Pericardiocentesis should be performed urgently
- B. Therapy should include diuretic, ACE inhibitor and beta-blocker
- C. CT scan would be more helpful than echocardiography in confirming diagnosis
- D. Sinus bradycardia is likely present

Additional Reading

- 1. Adler Y, Charron P, Imazio M, et al. 2015 ESC guidelines for the diagnosis and management of pericardial diseases. *Eur Heart J* 2015;36:2921-64.
- 2. Brucato A, Imazio M, Gattorno M, et al. Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence: the <u>AIRTRIP randomized clinical trial</u>. *JAMA* 2016;316:1906-12.
- 3. Chiabrando JG, Bonaventura A, Vecchié A, et al. Management of acute and recurrent pericarditis: JACC state-of-the- art review. *J Am Coll Cardiol* 2020;75:76-92.
- 4. Cremer PC, Kumar A, Kontzias A, et al. Complicated Pericarditis: Understanding Risk Factors and Pathophysiology to Inform Imaging and Treatment. *J Am Coll Cardiol* 2016 (68):2311–28
- 5. Klein AL, Imazio M, Cremer P, et al. Phase 3 trial of interleukin-1 trap rilonacept in recurrent pericarditis. *N Engl J Med* 2021;384:31.
- 6. Lilly LS. Treatment of acute and recurrent idiopathic pericarditis. *Circulation* 2013;127:1723.
- 7. Leung, YY, Yao Hui LL, Kraus VB. Colchicine--Update on mechanisms of action and therapeutic uses. *Semin Arthritis Rheum* 2015 Dec;45(3):341-50.
- 8. LeWinter M, Kontzias A, Lin D et al. Burden of Recurrent Pericarditis on Health-Related Quality of Life. *Am J Cardiol* 2021 (141): 113-119.